
July 8th, 2022

Machine Learning for Neutrino
Identification
Nitish Nayak
NuSTEAM Workshop

Prerequisites
• Types of Neutrino Interactions - CC , CC, CC, NC

• LArTPC detectors

• What neutrino interactions look like

• Why would we want to identify different types?

νe νμ ντ νx

Outline
• Curve fitting/Classification/Regression

• Gentle introduction to Neural Networks

• Predicting type of neutrino interactions in LArTPCs

• Hands-on demo

Types of -Interactionsν

• Different interactions look characteristically different

• Hadronic output (coming from the nucleus) broadly similar

• Interactions mainly differ in the nature of the final-state lepton

• Presence or absence of detected lepton tells us about type of interaction

, e, , τ ν

µ-

p, π±, … N

νµ

W

µ-, e-

p, π±, … N

νµ, e

W
νx

p, π±, … N

νx

Z

Charged Current
Neutral Current

Identifying Neutrinos
• Fundamental objective of any neutrino oscillation experiment

• Neutrinos change flavor, tagging flavor is crucial to understand what’s happening

• We have an idea of how many , we start off with from beam, identify and count how many there at FD => measure probabilityνμ νe

• Broadly track-like or shower-like

• LArTPCs give us exquisite detail

• But mistakes can easily be made!

-Interactions in LArTPCsν

Issues to deal with
• Neutrino interactions are messy at our energies!

• A decision flow can be something like this :

• If you identify a (usually a long, straight track) =>

• If you identify an (shower like) =>

• If you don’t see either =>

• But :

• Sometimes don’t see two ’s from (one is short and buried in the other), can be confused as

• are often long and straight too, can be confused as

• Other messy stuff

• We need automated tools to tell them apart! Can’t sift through each one manually..

μ νμCC

e νeCC

NC

γ π0 e

π± μ

Curve Fitting

• Teasing out relationships between observables

• Data is usually always noisy

• Often have to make assumptions about what its supposed to
look like : linear, quadratic, something fancy etc.

• Not always easy to justify!

Parametric Fitting
•

• Eg : , where

• Choose based on some measure denoting how good/bad the fit is (“loss
function”)

• Eg : (“least square distance”)

• Overfitting :

• Can be caused by having too many parameters (d.o.f) describing low-
dimensional data

• Fits well to given noisy data but doesn’t generalize!

y = f(⃗x , ⃗θ)

y = ax2 + bx + c ⃗θ ≡ (a, b, c)
⃗θ

⃗θ : min | ̂y − f(⃗x , ⃗θ) |2

https://xkcd.com/2048/

• Teasing out relationships between observables

• Data is usually always noisy

• Potential for spurious, nonsense results if not careful!

• But how to choose parametric form? Need to carefully assess which one works for given problem and what assumptions are being made

• Problem becomes worse when working with high-dimensional data and no reason to believe a parametric form even exists

• Eg : Predict how movies are going to perform based on various inputs (choice of actors, marketing budget, script etc)

• Sophisticated techniques that are automatically able to “learn” what’s best. Can predict with astounding accuracy in many cases

• More complexity automatically better! Still prone to overfitting, biases, bad assumptions etc/⟹

https://xkcd.com/1725/

Regression vs Classification
• Regression - Predict a continuous variable, for eg. the energy of the neutrino that interacted in the detector

• Parametric methods : Find : Choice of can be pre-determined or automatically “learnt”

• Complex problems require complex , often very non-linear

• Classification - Predict one of many possible discrete labels, for eg. CC , CC, CC, NC

• Classification is also curve-fitting in a way!

⃗θ : min | ̂y − f(⃗x , ⃗θ) |2 f

f

νe νμ ντ νx

• Now, we want and that best discriminates
between data coming from different labels

• “Decision boundary”

• Essentially a regression problem for the probability
of given data to belong to one label or the other

• Again, can be relatively simple or highly
complicated depending on context

• Involves another loss-function that minimizes
“probability error”, can be least-squares as before

f ⃗θ

f

Neural Networks

• Essentially devices that can spit out arbitrarily complex
functions in many dimensions

• Network of “neurons” to mimic structure of human brain

• Consider for eg, input 28x28 (=784 pixels) image where
each pixel has a number b/w (0, 1) denoting how bright
that pixel is

• The neurons (1 for each pixel) in the first (“input”) layer
can just be “brightness” values in that pixel

• For a neuron in the 2nd layer, calculate its response as :

• =

• Where represents the value of the neuron in the layer

• represents the strength of the connection between and
(“weights”)

• is a bias parameter

• is a so-called activation function, designed to ensure values in each
neuron are within a certain range, for eg between (0, 1) typically for
classification

a(1)
0 σ(w0,0a(0)

0 + w0,1a(0)
1 + w0,2a(0)

2 + . . . w0,na0
n + b0)

a(0)
i ith 0th

w0,i a(1)
0 a(0)

i

b0

σ

• In our eg, the final (“output”) layer has 10 neurons

• 1 for each digit we want to predict (0-9) based on
input image of 784 pixels

• Lets assume 2 hidden layers, each with 16 neurons

• => (784*16 + 16*16 + 16*10) = 12960 parameters
(“weights”)

• => (16 + 16 + 10) = 42 parameters (“biases”)

• Total = 13002 parameters

• Find and values such that we get the best
predictions

• Curve fitting in 13002 dimensions!

w

b

w b

Training
• Process of finding best and values referred to as “training the network”

• What do we mean by “best”?

• For some and , each neuron in output layer contains value between (0, 1)

• A probability measure denoting how confident the network is about the input image corresponding to that label

• Can define loss function exactly as before (“least-squares”) as

• and minimize this

w b

w b

L(w, b) =
9

∑
i=0

(̂yi − oi(w, b))2

Why so complex?
• Our brains can easily recognize patterns/digits even if the images were a bit fuzzy

• But its a hard problem! We need ~13000 parameters to be able to describe arbitrary decision boundary shapes

• Could imagine the neural network decision flow as :

• 2nd layer of neurons detect edges of image where pixels are bright

• 3rd layer of neurons combines these edge pixels in various shapes, for eg loops or lines

• Final layer might try to correlate number of loops or lines to the actual digits, for eg, 2 loops 0 lines => label “8” etc

• As we feed in more data during the training phase to optimize the loss function, network can get better and better at figuring out
these patterns

+ =

Gradient Descent
• Algorithm to minimize loss-function, and find best ,

• has 13,002 input parameters but outputs a single number

• Finding a minimum for such a function is also complicated!

• Gradient descent — “ball rolling down a hill”

• Non-convex optimization : not guaranteed to find global minimum

• Try starting the ball at different starting points. Also “stochastic GD” — try to make ball jump across valleys

L(w, b) w b

L(w, b)

What’s the takeaway
• Forced to deal with complexity

• Large dimensionality, unknown parametric relationships

• Overfitting : network starts to predict based on spurious features
it learns from training data

• For eg, it might decide the digit in image on particular
handwriting styles and not generalize to other styles — “bias”

• But its hard to know what it learns! ~Black box

• We never assess network performance on training dataset

• Always keep a fraction of data separate and then see how trained
network performs (“Test dataset”)

• If training errors are very different from test errors, we may
have issues

• Also good practices, shuffling dataset before training, cross-
validation, i.e change up training and test data for different
iterations

• Playing around with GD parameters etc

https://xkcd.com/1838/

Neutrino Flavor Tagging

• Classification problem

• We use “deep neural networks”, particularly a brand called convolutional neural networks

• Trained on ~6 million total events across CC , CC, CC, NC

• ~22 million parameters (>> 13000!), “softmax” activation function to squish neurons to b/w (0, 1)

• Trained for a week using Nvidia GPU clusters. Actually, most modern GPUs can handle these kinds of payloads but sometimes need
more than 1

• Three input images, each 500 x 500 = 250,000 pixels

• Output is a score b/w (0, 1) for each of 4 flavor labels : CC , CC, CC, NC. Also has scores for other features of interaction

νe νμ ντ νx

νe νμ ντ νx

Why Deep?
• Previously, traditional approaches involve using set of human-engineered features as input, even to a shallower neural network

• Examples of useful features for our problem : number of showers, gap from vertex, number of tracks

• Deep neural networks are able to figure these out themselves and their increasing depth also allows them to catch features we
may have missed

• We get more accurate networks, but possibly at the cost of not knowing as much about what its doing.

• Validation is key to building trust! If established, we can reap the benefits

• Again, context is key. Sometimes it pays to build a less complicated network — active area of research

• Extracted features end up looking a bit like this

• Pretty abstract, hard to interpret

• Training process is actually done over multiple iterations

• Works something like this :

• Split dataset into 90% “training”, 10% “test”. Don’t touch test
dataset until after all the training is done

• For each iteration (“epoch”), further split “training” into 80% actual
training, 10% validation dataset after shuffling randomly

• Feed the 80% into neural network in batches of 64, evaluate loss-
function for each batch

• Tune , after each batch using Gradient Descent

• Once all the 80% dataset is exhausted, evaluate result on
validation dataset (“accuracy”, “loss”)

• Now re-shuffle the 90% again into a different training and
validation set and start all over again

w b

• Dashed is on training dataset, solid is on validation dataset

• Notice we haven’t even touched the remaining 10% test dataset

• This is because we’ve been using information from the validation set to inform the training

• To stay truly unbiased, we need to finally evaluate on events the network has never seen

• For now, we stop training when things stop improving after a few epochs/iterations

• Notice also that it flatlines — this is a good sign that there’s no overfitting!

• If we’re confident the training went well, we can then look at the test dataset and assess the performance and see if we get
similarly accurate results

Doesn’t look
like this!

Lets test things out!

• As a demo, we will test out the CNN network used in
[https://journals.aps.org/prd/abstract/10.1103/
PhysRevD.102.092003]

• We can do all this on the browser itself, hopefully
without having to install anything

• Go to https://colab.research.google.com/

• In the pop-up, go to the GitHub tab and type in
url : https://github.com/nitish-nayak/dune-cvn

• You should see two .ipynb files (Python notebooks)

• Select “dune_cvn_nusteam.ipynb”

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://colab.research.google.com/
https://github.com/nitish-nayak/dune-cvn

Further Reading/Homework
• Borrowed heavily from 3Blue1Brown’s excellent neural network explainer :

• https://www.3blue1brown.com/topics/neural-networks

• Youtube playlist : https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

• Other references :

• https://towardsdatascience.com/a-visual-introduction-to-neural-networks-68586b0b733b

• https://towardsdatascience.com/artificial-neural-networks-for-total-beginners-d8cd07abaae4

• https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6

• https://www.youtube.com/watch?v=YRhxdVk_sIs

• Build and train your own CNN :

• https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/
Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb

• https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-
images-84b9c78fe0ce

https://www.3blue1brown.com/topics/neural-networks
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://towardsdatascience.com/a-visual-introduction-to-neural-networks-68586b0b733b
https://towardsdatascience.com/artificial-neural-networks-for-total-beginners-d8cd07abaae4
https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6
https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb
https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb
https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-images-84b9c78fe0ce
https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-images-84b9c78fe0ce

